

Journal of Alloys and Compounds 275-277 (1998) 407-411

The simulation of polarised absorption and magnetic circular dichroism in $\text{LiYF}_4:\text{Nd}^{3+}$

Hilde de Leebeeck*, Christiane Görller-Walrand

Department of Chemistry, Coordination Chemistry Division, K.U. Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Abstract

Polarised absorption spectra of the Nd³⁺ ion in a LiYF₄ host are recorded at 4.2 and 150 K and at room temperature in a region of 240–2500 nm. The determination of the CF energy level scheme is completed and labelling of the levels with irreducible representations of the S₄ point group is carried out. The CF wavefunctions are derived using a free-ion and CF hamiltonian which results in the optimisation of 27 parameters. The dipole strengths of the transitions are used to optimise 12 intensity parameters. The free ion, CF and intensity parameters are evaluated by means of the graphical comparison of simulated and experimental spectra. In addition, magnetic circular dichroism of LiYF₄:Nd³⁺ is registered in the region of 257–875 nm at 4.2 K with the magnetic field of 0.9 T along the optical *c*-axis. The Zeeman levels are analysed using the optimised free ion and CF parameters. The obtained intensity parameter set is then used to calculate the dipole strengths of the transitions between the Zeeman levels. The comparison of simulated and experimental MCD spectra is a test of the value of the optimised parameter sets. (© 1998 Elsevier Science S.A.

Keywords: LiYF₄:Nd³⁺; Optics; Magneto-optics; Energy levels; Dipole strength; Magnetic circular dichroism

1. Introduction

In this paper the polarised absorption spectra of $\text{LiYF}_4:\text{Nd}^{3+}$ are used to optimise 27 parameters to describe the free ion and crystal field perturbations. In addition the dipole strengths of the transitions are used to fit 12 intensity parameters. These parameter sets are sufficient to describe the spectroscopic properties of the neodymium³⁺ ion in a LiYF₄ host. This will be proved in the graphical comparison of the predicted and experimental magnetic circular dichroism of LiYF₄:Nd³⁺.

2. Experimental details

The optical spectra are taken on an oriented LiYF_4 single crystal doped with 1.5% neodymium³⁺.

The polarised absorption spectra are recorded on an AVIV 17 DS spectrophotometer. The optical region of 240–2500 nm is investigated at 4.2 and 150 K and at room temperature using an Oxford 1204 continuous flow cryostat.

The magnetic circular dichroism is registered on an AVIV 62 MCD DS CD spectrophotometer at 4.2 K using

the same cryostat. The optical axis of the $LiYF_4:Nd^{3+}$ complex is positioned along the magnetic field lines of a 9000 G Oxford N177 electromagnet.

3. Discussion

3.1. Simulation of the crystal field energy level scheme

The electronic configuration of neodymium³⁺ (f³) is disturbed by eight fluorine ions in the first coordination sphere of the central rare earth ion. These form a slight distorted dodecahedron with S_4 symmetry [1]. The parametrisation of the energy levels of the neodymium³⁺ ion in a LiYF₄ host are given in Eq. (1) [2,3].

$$\begin{split} E &= E_{\rm av} + \sum_{k=2,4,6}^{\infty} f_k F^k + \zeta_{\rm nl} A_{\rm SO} + \alpha L(L+1) + \beta G(G_2) \\ &+ \gamma G(R_7) + \sum_{i=2,3,4,6,7,8}^{\infty} T^i t_i + \sum_{k=2,4,6}^{\infty} P^k p_k \\ &+ \sum_{k=0,2,4}^{\infty} M^k m_k + B_0^2 C_0^2 + B_0^4 C_0^4 + B_0^6 C_0^6 \\ &+ B_4^4 (C_4^4 + C_{-4}^4) + i B_4^4 (C_4^4 + C_{-4}^4) + B_4^6 (C_4^6 + C_{-4}^6) \\ &+ i B_4^6 (C_4^6 + C_{-4}^6) \end{split}$$
(1)

^{*}Corresponding author.

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00350-8

Table 1 Optimised free ion and crystal field parameters (in cm^{-1}) for LiYF_4 :Nd³⁺

Parameter	Parameter value	Parameter	Parameter value		
Central field		Spin-spin and spin-other-orbit			
$E_{\rm av}$	24 413	M^{0}	0.7		
Electron rep	ulsion	M^2	0.4		
F^{2}	72 911	M^4	0.3		
F^4	52 471	Electrostatic	correlated SOC		
F^{6}	35 486	P^2	195		
Spin-orbit co	oupling (SOC)	P^4	146		
ζ	872	P^{6}	98		
Two-body in	iteraction	Crystal field S_4			
α	21	B_0^2	372		
β	- 575	B_0^{4}	-972		
γ	1488	$B_0^{\check{6}}$	-20		
Three-body	interaction	B_{4}^{4}	-1116		
T^2	226	iB_4^4	- 599		
T^3	43	B_{A}^{6}	-1018		
T^4	87	iB_4^6	-194		
T^{6}	-285	-			
T^7	320				
T^8	212				

The parameters which appear in Eq. (1) incorporate the radial parts of the matrix elements $\langle \psi | H | \psi \rangle$ and are optimised [4] using the experimental derived energy levels. The assignment of the energy levels is not only based on the position of the levels [5] but also on the labelling with irreducible representations [6,7]. This labelling is deduced from the selection rules of polarised absorption using group theory for the S_4 point group. In addition the α polarised measurements were found to be similar to the σ

polarisation, indicating the predominantly electric dipole (ED) character of the transitions.

The combination of the position and labelling of the CF energy levels makes it possible to assign the correct eigenvalue to the observed energy level.

A total of 27 parameters (free ion and crystal field) are optimised together in one diagonalisation fitting to 149 labelled energy levels. The values and significations of the parameters are listed in Table 1 and the calculated energy levels are compared with the experimental labelled levels in Table 2.

It appears that the values for the imaginary parts of the B_4^4 and B_4^6 are of considerable magnitude when the only slight distortion of the dodecahedron (D_{2d}), where the imaginary parts iB_4^4 and iB_4^6 are absent, is taken into account. The values for the iB_4^4 and iB_4^6 are caused by the mixing of the wavefunctions of the neodymium complex when J–J-mixing is allowed. In addition we prefer not to work with an arbitrary choice of the position of the axes [5] but to follow the conventions of Koster et al. [8].

3.2. Simulation of the transition probability

The transition probability in the polarised absorption spectra can be expressed as a dipole strength D. As was concluded earlier the transitions of the neodymium ion in LiYF₄ posses predominantly an electric dipole character. In order to calculate the electric dipoles one needs the wavefunctions of the system and an additional set of

Fig. 1. Comparison of the experimental and simulated ${}^{4}F_{9/2} \leftarrow {}^{4}I_{9/2}$ transitions in the polarised absorption and magnetic circular dichroism spectra of LiYF₄:Nd³⁺.

Table 2					
Comparison of the labelled experimental ar	nd simulated energy	levels (in cm^{-1})	of LiYF ₄ :Nd ³⁺	according to the $S_{\rm 4}$	symmetry

Multiplet	Label	$E_{\rm exp}$	$E_{ m calc}$	Multiplet	Label	$E_{ m exp}$	$E_{ m calc}$
⁴ I _{9/2}	$\Gamma_{7,8}$	0	0	${}^{4}G_{11/2}$	$\Gamma_{7,8}$	21 812	21 826
	$\Gamma_{7,8}$	130	136	${}^{2}K_{15/2}$	$\Gamma_{5,6}$	21 830	21 827
	$\Gamma_{5,6}$	180	190	${}^{4}G_{11/2}$	$\Gamma_{7,8}$	21 902	21 921
	$\Gamma_{5,6}$	247	275	${}^{2}K_{15/2}$	$\Gamma_{5,6}$	21 948	21 958
	$\Gamma_{7,8}$	523	531	${}^{4}G_{11/2}$	$\Gamma_{5,6}$	21 985	22 003
${}^{4}I_{11/2}$	$\Gamma_{7,8}$		1988	${}^{2}K_{15/2}$	$\Gamma_{7,8}$	21 994	22 015
	$\Gamma_{5,6}$		2033	${}^{2}P_{1/2}$	$\Gamma_{7,8}$	23 404	23 415
	$\Gamma_{7,8}$		2036	$^{2}D(1)_{5/2}$	$\Gamma_{7,8}$	23 898	23 925
	$\Gamma_{5.6}$		2077		$\Gamma_{5.6}$	23 942	23 958
	$\Gamma_{5,6}$		2228		$\Gamma_{5,6}$	24 038	24 026
	$\Gamma_{7.8}$		2266	${}^{2}P_{3/2}$	$\Gamma_{7.8}$	26 264	26 288
${}^{4}I_{13/2}$	$\Gamma_{5.6}$	3933	3942		$\Gamma_{5.6}$	26 344	26 339
	$\Gamma_{7.8}$	3949	3965	${}^{4}D_{3/2}$	$\Gamma_{5.6}$	28 110	28 098
	$\Gamma_{5.6}$	3993	3990		$\Gamma_{7.8}$	28 217	28 218
	$\Gamma_{7.8}$	4026	4017	${}^{4}D_{5/2}$	$\Gamma_{5.6}$	28 372	28 371
	$\Gamma_{5.6}$	4204	4208		$\Gamma_{5.6}$	28 529	28 570
	$\Gamma_{5.6}$	4221	4243		$\Gamma_{7.8}$	28 584	28 584
	$\Gamma_{7.8}$	4241	4246	${}^{4}D_{1/2}$	$\Gamma_{7.8}$	28 803	288 814
${}^{4}I_{15/2}$	$\Gamma_{5.6}$	5854	5868	${}^{2}I_{11/2}$	$\Gamma_{5.6}$	29 206	29 239
	$\Gamma_{5.6}$	5913	5926		$\Gamma_{7.8}$	29 296	29 297
	$\Gamma_{7.8}^{5,5}$	5946	5964		$\Gamma_{5.6}$	29 377	29 399
	$\Gamma_{7,8}$	6026	6037		$\Gamma_{7,8}^{5,5}$	29 467	29 522
	$\Gamma_{7,8}$	6314	6327		$\Gamma_{5.6}$	29 719	29 694
	$\Gamma_{5,6}^{\prime,3}$	6348	6367		$\Gamma_{7,8}^{3,0}$	29 734	29 716
	$\Gamma_{7,8}^{5,0}$	6392	6402	${}^{2}L_{15/2}$	$\Gamma_{7,8}^{7,3}$		30 167
	$\Gamma_{5,6}$	6434	6443	15/2	$\Gamma_{5.6}$		30 208
${}^{4}F_{3/2}$	$\Gamma_{7,8}^{5,0}$	11 542	11 540		$\Gamma_{5,6}^{5,6}$	30 235	30 280
572	$\Gamma_{5.6}$	11 602	11 580		$\Gamma_{7,8}^{5,0}$	30 292	30 325
${}^{4}F_{5/2}$	$\Gamma_{7,8}^{5,0}$	12 540	12 531		$\Gamma_{5.6}$	30 375	30 366
572	$\Gamma_{5,6}^{\prime,3}$	12 550	12 566		$\Gamma_{7,8}^{3,0}$		30 373
	$\Gamma_{5,6}^{5,6}$	12 632	12 675	${}^{4}D_{7/2}$	$\Gamma_{7,8}^{7,3}$	30 450	30 410
2 H(2) _{9/2}	$\Gamma_{7,8}^{5,0}$	12 647	12 636	112	$\Gamma_{5.6}$		30 523
\$ 7972	$\Gamma_{5,\epsilon}$	12 670	12 690	${}^{2}L_{15/2}$	$\Gamma_{7,8}^{3,0}$	30 548	30 582
	$\Gamma_{7,8}^{5,0}$	12 736	12 791	${}^{4}D_{7/2}$	$\Gamma_{7,8}^{7,3}$		30 592
	$\Gamma_{5.6}$	12 809	12 806	${}^{2}L_{15/2}$	$\Gamma_{5.6}$	30 574	30 606
	$\Gamma_{7,8}^{5,5}$	12 843	12 881	${}^{4}D_{7/2}$	$\Gamma_{5,6}^{5,6}$	30 599	30 654
${}^{4}F_{7/2}$	$\Gamma_{7,8}^{7,8}$	13 499	13 516	${}^{2}I_{13/2}$	$\Gamma_{7,8}^{3,3}$	30 672	30 728
	$\Gamma_{5.6}$	13 524	13 533		$\Gamma_{5.6}$	30 720	30 681
${}^{4}S_{3/2}$	$\Gamma_{7.8}^{5,5}$	13 630	13 643		$\Gamma_{5,6}^{5,6}$	30 758	30 766
${}^{4}F_{7/2}$	$\Gamma_{7,8}$	13 640	13 660		$\Gamma_{7,8}^{5,5}$	30 898	30 894
${}^{4}S_{3/2}$	$\Gamma_{5.6}$	13 650	13 649		$\Gamma_{5.6}$	30 925	30 939
${}^{4}F_{7/2}$	$\Gamma_{5,6}^{5,6}$	13 662	13 662		$\Gamma_{7,8}^{5,5}$	31 062	31 050
${}^{4}F_{9/2}$	$\Gamma_{5.6}$	14 753	14 765		$\Gamma_{5.6}$		31 060
	$\Gamma_{7.8}$	14 783	14 788	${}^{2}L_{17/2}$	$\Gamma_{7.8}$	31 645	31 673
	$\Gamma_{7,8}^{7,3}$	14 882	14 884	1772	$\Gamma_{7,8}$	31 743	31 743
	$\Gamma_{5.6}$	14 896	14 903		$\Gamma_{5.6}$	31 800	31 791
	$\Gamma_{7,8}^{5,5}$	14 954	14 951		$\Gamma_{5,6}^{5,6}$	31 858	31 859
2 H(2) _{11/2}	$\Gamma_{7,8}^{7,3}$	15 928	16 012		$\Gamma_{7,8}^{3,0}$	31 890	31 887
	$\Gamma_{5.6}$	15 976	16 011		$\Gamma_{5.6}$	31 934	31 931
	$\Gamma_{7,8}^{5,0}$	16 002	16 031		$\Gamma_{7,8}^{3,0}$	31 940	31 948
	$\Gamma_{5,6}^{\prime,3}$	16 063	16 044		$\Gamma_{7,8}^{\prime,3}$	32 048	32 072
	$\Gamma_{7,8}^{5,0}$	16 136	16 070		$\Gamma_{5.6}$	32 096	32 082
	$\Gamma_{5,6}^{\prime,\circ}$	16 147	16 100	2 H(1) _{9/2}	Γ _{7.8}	32 920	32 954
${}^{4}G_{5/2}$	$\Gamma_{5,2}^{3,0}$	17 163	17 185	. / 7/ 4	$\Gamma_7^{',\circ}$		33 038
212	$\Gamma_{7,8}^{3,0}$	17 274	17 278		$\Gamma_{5,6}^{\prime,\circ}$	33 019	33051
	$\Gamma_{5,6}^{\prime,\circ}$	17 301	17 333		$\Gamma_{5,6}$	33 104	33 108
$^{2}G(1)_{7/2}$	$\Gamma_{5}^{0,0}$	17 412	17 404		$\Gamma_{7,0}^{3,0}$	33 155	33 153
1/2	$\Gamma_7^{3,6}$	17 423	17 396	$^{2}D(2)_{2/2}$	$\Gamma_{5,\epsilon}^{\prime,\circ}$	33 433	33 446
	$\Gamma_7^{\prime,\circ}$	17 479	17 479	\$ 13/2	$\Gamma_{7,\circ}$	33 516	33 529
	$\Gamma_{5,2}^{\prime,\circ}$	17 653	17 668	2 H(1),2	$\Gamma_{5,\epsilon}^{\prime,\circ}$	34232	34 250
	5,0				5,0		

Table 2. Continued

Multiplet	Label	E_{exp}	$E_{\rm calc}$	Multiplet	Label	$E_{\rm exp}$	$E_{\rm calc}$
⁴ G _{7/2}	$\Gamma_{7.8}$	19 072	19 042		$\Gamma_{5.6}$	34289	34 303
	$\Gamma_{5.6}$	19 082	19 081		$\Gamma_{7.8}^{5,0}$	3433 8	34 310
	$\Gamma_{5.6}$	19 185	19 196		$\Gamma_{5.6}$	34 429	34 436
	$\Gamma_{7.8}$	19 215	19 214		$\Gamma_{7.8}$	34 460	34 437
${}^{4}G_{9/2}$	$\Gamma_{7.8}$	19 464	19 462		$\Gamma_{7.8}$		34 501
	$\Gamma_{5.6}$	19 564	19 556		$\Gamma_{5.6}$	34 523	34 508
	$\Gamma_{7.8}$	19 618	19 620	$^{2}D(2)_{5/2}$	$\Gamma_{7.8}$		34 641
$^{2}K_{13/2}$	$\Gamma_{5.6}$	19 668	19 668		$\Gamma_{5.6}$		34 644
	$\Gamma_{5.6}$	19 691	19 711	$^{2}F(2)_{5/2}$	$\Gamma_{5.6}$	38 458	38 533
	$\Gamma_{7,8}$	19 700	19 702		$\Gamma_{5.6}$	38 672	38628
${}^{4}G_{9/2}$	$\Gamma_{7.8}$	19 719	19 738		$\Gamma_{7.8}^{5,0}$	38 704	38 693
$^{2}K_{13/2}$	$\Gamma_{7.8}$	19 727	19 757	$^{2}F(2)_{7/2}$	$\Gamma_{5.6}$	39 924	39 983
${}^{4}G_{9/2}$	$\Gamma_{5.6}$	19 792	19 742	2	$\Gamma_{7,8}^{5,5}$	39 970	39 968
${}^{2}K_{13/2}$	$\Gamma_{5.6}^{5,0}$	19 823	19 808		$\Gamma_{5.6}$	40 070	40 051
13/2	$\Gamma_{7,8}^{5,0}$	19 950	19 976		$\Gamma_{7.8}^{5,5}$	40 179	40 143
	$\Gamma_{5.6}$	19 973	19 992	$^{2}G(2)_{9/2}$	$\Gamma_{7,8}$		48 010
$^{2}G(1)_{9/2}$	$\Gamma_{5.6}^{5,0}$		21 020	712	$\Gamma_{7,8}$		48 121
	$\Gamma_{7,8}^{5,0}$	21 063	21 054		$\Gamma_{5.6}$		48 138
	$\Gamma_{5.6}$	21 072	21 091		$\Gamma_{7,8}^{5,5}$		48 235
	$\Gamma_{7,8}^{5,0}$	21 083	21 098		$\Gamma_{5.6}$		48 262
	$\Gamma_{7,8}$	21 111	21 182	$^{2}G(2)_{7/2}$	$\Gamma_{7.8}^{5,5}$		48 925
$^{2}D(1)_{3/2}$	$\Gamma_{7,8}$	21 283	21 318		$\Gamma_{5.6}$		49 028
572	$\Gamma_{5.6}$	21 335	21 335		$\Gamma_{7,8}^{3,0}$		49 165
${}^{4}G_{11/2}$	$\Gamma_{5,6}^{5,6}$	21 440	21 457		$\Gamma_{5.6}$		49 218
11/2	$\Gamma_{7,8}^{5,0}$	21 462	21 470	$^{2}F(1)_{7/2}$	$\Gamma_{7,8}^{5,5}$		67 030
	$\Gamma_{5.6}$	21 555	21 586		$\Gamma_{5.6}$		67 329
${}^{2}K_{15/2}$	$\Gamma_{5,6}^{5,6}$	21 713	21 688		$\Gamma_{7.8}^{5,5}$		67 566
10/2	$\Gamma_{7,8}^{5,0}$	21 730	21 721		$\Gamma_{5.6}$		67 595
	$\Gamma_{5.6}^{\prime,0}$	21 750	21 754	$^{2}F(1)_{5/2}$	$\Gamma_{5.6}^{5.6}$		68 309
	$\Gamma_{7,8}^{5,0}$	21 776	21 785		$\Gamma_{7.8}$		68 739
	$\Gamma_{7,8}^{1,3}$	21 806	21 818		$\Gamma_{5,6}^{1,3}$		68 767

intensity parameters $A_{\lambda tp}$ values which will be optimised [9] using the experimental dipole strengths. The expression of the global dipole strength [10,11] is given in Eq. (2) where χ are the local field corrections. The optimised intensity parameters are given in Table 3.

$$D = \chi_{\rm MD} \left| \left\langle \psi \right| - \mu_{\rm B} (L + 2S)_{\rho}^{1} \left| \psi' \right\rangle \right|^{2} + \chi_{\rm ED}$$
$$\cdot e^{2} \left[\sum_{\lambda tp} a_{\lambda tp} A_{\lambda tp} \right]^{2}$$
(2)

3.3. Simulation of the magnetic circular dichroism

The simulation of the magnetic circular dichroism

Table 3 Intensity parameters (in 10^{-12} cm) for LiYF₄:Nd³⁺ according to the S₄ symmetrie

Parameter	Parameter value
$\overline{A_{232} + iA_{232}}$	186+i263
$A_{432} + iA_{432}$	79+i155
$A_{452} + iA_{452}$	-179 + i26
$A_{652}^{+52} + iA_{652}^{+52}$	-525 - i10
$A_{672} + iA_{672}$	228-i434
$A_{676} + iA_{676}$	9-i14

requires the Zeeman energy levels and the difference in dipole strengths for left and right circular polarised light.

The Zeeman levels are calculated by means of one diagonalisation introducing the free ion, crystal field and Zeeman perturbations together using the optimised parameter sets.

The dipole strengths for left and right circular polarised light are calculated using the Zeeman wavefunctions and the optimised intensity parameters. The dependence of the optimisation of the parameter sets is clear.

3.4. Graphical comparison of experimental and simulated polarised absorption and magnetic circular dichroism

The graphical simulation is performed using Eq. (3) for the polarised absorption spectra and Eq. (4) for the magnetic circular dichroism [12].

$$\epsilon(\overline{\nu}_{\rm CF}, T) = 327 \overline{\nu}_{\rm CF} \frac{X_{\rm a}(T)}{g_{\rm a}} D_{\rm calc} f_{\rm CF}(\overline{\nu}) \tag{3}$$
$$\frac{\Delta \epsilon(\overline{\nu}_{\rm Zeeman}, T)}{H} = \frac{327 \overline{\nu}_{\rm Zeeman} X_{\rm a}(T) (D_{\rm calc}^{1} - D_{\rm calc}^{r}) f_{\rm Zeeman}(\overline{\nu})}{H} \tag{4}$$

with: ϵ , extinction coefficient $(1 \text{ mol}^{-1} \text{ cm}^{-1})$; $\bar{\nu}$, position of the crystal field (CF) or Zeeman transition (cm⁻¹); *T*, temperature (K); *H*, magnetic field (G); X_a , population of the ground field level; g_a , degeneration of the ground field level; D_{calc} , calculated dipole strength (Debye²); $f(\bar{\nu})$, form function (Lorentz or Gauss).

These graphical simulations are carried out for the complete optical region. We present here (Fig. 1) the ${}^{4}F_{9/2} \leftarrow {}^{4}I_{9/2}$ transitions [12] which illustrate the neodymium³⁺ spectra in a single crystalline state. The bands are very narrow and the transitions are not well separated with an overlap of the bands.

4. Conclusions

In this paper the optimisation of the free ion, crystal field and intensity parameters of $\text{LiYF}_4:\text{Nd}^{3+}$ is carried out and evaluated by means of a graphic comparison between the simulated and experimental data. Not only are the used experimental polarised absorption spectra to optimise the parameters compared but, also, another phenomenon can be predicted: magnetic circular dichroism. The position of the transitions is very well predicted, and the comparison of the intensity of the transitions is satisfying.

This shows the independence of the parameter sets of one technique, and proves its value in predicting other properties.

Acknowledgements

We thank M.F. Reid for the disposition of the programs that are used for the optimisations. This work was also financially supported through a grant from the IWONL.

References

- [1] Vishwamittar, S.P. Puri, J. Phys. C Solid State 7 (1974) 1337.
- [2] H.M. Crosswhite, H. Crosswhite, J. Opt. Soc. Am. B1 (1984) 246.
- [3] C. Görller-Walrand, K. Binnemans, Rationalisation of crystal field parametrisation, in: Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1997.
- [4] H. de Leebeeck, C. Görller-Walrand, J. Alloy Compounds 225 (1995) 75.
- [5] M.A. Couto dos Santos, P. Porcher, J.C. Krupa, J.Y. Gesland, J. Phys. Condens. Matter 8(25) (1996) 4643.
- [6] A.A.S. da Gama, G.F. de Sa, P. Porcher, P. Caro, J. Chem. Phys. 75(6) (1981) 2583.
- [7] Z. Song, S. Lian, D. Ma, Y. Xu, Y. Gu, Y. Gui, D. Hua, S. Wang, Guangpuxue Yu Guangpu Fenxi 4(5) (1984) 1.
- [8] G.F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz, Properties of the Thirty-two Point Groups, MIT Press, Cambridge MA, 1993.
- [9] C. Görller-Walrand, L. Fluyt, P. Porcher, A.A.S. da Gama, G.F. de Sa, W.T. Carnall, G.L. Goodman, J. Less-Common Metals 148 (1989) 339.
- [10] C. Görller-Walrand, L. Fluyt, A. Ceulemans, W.T. Carnall, J. Chem. Phys. 95 (1991) 3099.
- [11] M.F. Reid, F.S. Richardson, J. Chem. Phys. 179 (1983) 5735.
- [12] L. Fluyt, E. Hens, H. de Leebeeck, C. Görller-Walrand, J. Alloy Compounds (in press).